
1(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

The Buffer Pool Hit RatioThe Buffer Pool Hit Ratio
is Dead !!is Dead !!

Joel Goldstein
Responsive Systems 

(732) 972-1261
Email: joel@responsivesystems.com

Web Site
www.responsivesystems.com



2(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Key Presentation PointsKey Presentation Points

Different types of  hit ratios – calculations

Relating them to system and application performance

Higher is better... performance examples & graphs

Hit ratio compared to the I/O Rate/Second

Bigger pools do not always mean better performance

Summaries and conclusions

History is important – you have to know where you came from, and where 
you are, to be able to move forward.  We need to understand what hit ratios 
mean relative to performance – and then compare them to the I/O rate to 
see the difference.  This presentation will illustrate that an I/O rate is 
meaningful and measurable, and that a hit ratio is not necessarily relevant to 
performance.
With 64bit memory, and Gigabytes of memory, is it still worth tuning, or 
should you just throw memory at the pools?  Data shows that more memory 
often does not improve performance unless you can make the pool(s) larger 
than the data – and this still can’t happen in most systems.



3(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

BackgroundBackground

Database Management Systems

Physical I/O – or keep Data in memory
– Memory is fast, I/O is slow

Both were expensive
– While memory is much less expensive every year, and CACHE memory is 

even less than mainframe memory, DASD is really cheap now

Online systems
– Performance became important
– Users were waiting for a response

I/O has always been a performance problem and limiting factor for large 
applications.  This has not changed today, and the goal of DB2 is to 
eliminate/reduce I/Os by keeping data in memory.  As we look ahead to 
DB2 V8, it will allow up to a TB of memory specification for the buffer pools.  
Of course, this depends upon your processor having this much or more 
available.



4(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Access to dataAccess to data

All access was random, in theory
– Of course you could still read the whole database

Processing was Record oriented, not Set oriented
– Hierarchical 
– Network

There was no anticipatory reading of data (prefetch)

When all access was (is) random, a hit ratio had some relevance to 
performance – but was (and is) not measurable.



5(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Measuring PerformanceMeasuring Performance

Transaction elapsed times
– Data Transmission 4800/9600 Baud vs. T1 or better today
– Input/Output message queuing to disk
– CPU
– I/O wait

I/O avoidance
– Keep data in memory
– Buffer Pools

Processors did not have a lot of memory
– Systems were smaller, more efficient – rigorous design
– Buffer Pools were small

Many of the major factors of transaction response time have changed over 
the years.  In the early 70’s, it was common to see data transmission times 
for (basically) text messages  of 1600 bytes take 3-6 Secs.  I/O times took 
more than an order of magnitude longer than the averages on well running 
dasd subsystems today.   Yet, there are many poorly performing dasd 
subsystems in the world today.
On the processor CPU side, the average desktop PC is approaches the 
mainframe power of a decade past.
The same perspectives exist for memory.  Most desktop machines today 
start at 256meg.

Current mainframes can have 64 Gig of memory, and this number will 
increase rapidly now that we have 64bit operating systems.
We have always filled (and often exceeded) available memory – and this 
won’t change within this decade.



6(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Measuring DB2 Pool PerformanceMeasuring DB2 Pool Performance

The first measurement at the system level
– Hit ratio

Application hit ratio
– Ignores any pages/blocks prefetched in advance
– Is only useful to measure application delay
– Useless as a system tuning metric

System hit ratio
– Measures pool efficiency by factoring in pages/blocks prefetched in 

advance

When all access was random, and there was no concept of prefetching 
multiple blocks of data, determined by the DBMS software.
So measurements were simpler.  Of course, if we knew that data would be 
accessed sequentially, we could buffer some data in memory outside a 
program using a bufno=x parameter on the JCL – but this still did not help 
data accessed by a DBMS.



7(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Measuring Pool PerformanceMeasuring Pool Performance

Application hit ratio
(GP – Read I/Os)/GP

System hit ratio
(GP – Sum of all PagesRead)/GP

Convergence
– When access is all random, and only Synch I/O – the ratios are the same

The initial purpose of the first Hit Ratio we used for DB2 effectively 
measured only application delay, and did not really address the activity 
taking place in the buffer pools.  Then we came to the System Hit Ratio that 
factored in the effect of pages read into the pool by prefetch reads.
When access is all random, so there is no sequential prefetch, and dynamic 
prefetch is not being used by the buffer manager, then the application and 
system hit ratios will be identical.



8(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Measuring Pool PerformanceMeasuring Pool Performance

Divergence

– When access is sequential with heavy prefetch 
» The application hit ratio is always high, 95-98%

One I/O is 32 pages (97% hit)
» The system hit ratio is always low

A complete scan, hit ratio is Zero

– Dynamic prefetch reduces the system hit ratio, and it may be negative

Let’s take the case of a pool where all objects are accessed using sequential 
prefetch.  The application hit ratio will always be high, at least 97%, because 
32 pages are read with a single I/O.  A prefetch “request” can read 
anywhere from 0 to 32 pages, because the buffer manager knows which (if 
any pages) are already in the pool.  
So – if all 32 pages are read, the application hit ratio is 97%; however, the 
system hit ratio is ZERO.
Additionally, it is quite common that many pages read by dynamic prefetch 
are never actually accessed by the application, so
No getpage requests are ever issued for them.  This drives the system hit 
ratio down, and it can actually have a negative number.



9(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Pool PerformancePool Performance

Is rarely  linear
– More memory does not always improve performance
– Small pool increases often don’t show any improvement
– Sometimes additional “smallish” increases can provide substantial 

improvements
– Many times large increases do not help

» Sometimes they do….
» It may depend on what “large” means to you…

A number, percentage, or it depends…?

We will see from data later in this presentation that pool performance is not 
linear.  Doubling the pool size does not double the hit ratio, or cut the I/O 
rate in half.  We will always reach a point of diminishing returns, when 
adding buffers to a pool.
Now, I realize that some of the above items seem contradictory, and will 
explain them in more detail during the presentation.
The data shown in future slides will also illustrate all the above points.



10(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

As you Start to Tune Pool PerformanceAs you Start to Tune Pool Performance

You will find many interesting application performance problems 
that your online monitors may not be highlighting

– Objects that are used in a very different manner than the application designers 
expected

– Tablespaces with lots of sequential scan

– Indexes with sequential scan

Burn those CPU engines…..

As start to analyze your pool performance, and the performance of the 
objects in each pool, you often find objects that are not being accessed as you 
expect they should be.  Perhaps an Index with heavy scan, or a tablespace 
that is monopolizing a pool – and this can be either sequential, or a very 
large random object.
The key to performance, is grouping objects based on access type, and 
working set size.



11(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

A 60% increase provides nothingA 60% increase provides nothing-- 160%160% DoesDoes

IMS generally doesn’t use large pools compared to DB2

tripled

Here I’m using an IMS example to show that even large percentage
increases may not show any improvement until you pass a certain
“critical” threshold for the amount of data that can remain in a pool. IMS 
systems do not use the amount of buffer pool sizes that we commonly use 
for DB2. 



12(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Another IMS exampleAnother IMS example

VSAM Buffer SubPool simulation Results

Pool Name..............................TST1

Pool Type..............................VSAM

SubPool Buffer Size..................16,384

Lower Block Size......................8,192

Number of Objects accessed...............13

Total number of Get Block...........150,169

SPool Size GetB used   Num. of Hits  Hit Ratio     Elapsed Time

50      150,119             91       0.0 %       00:08:15

.  Missing lines  .

370      149,799            751       0.5 %       00:08:12

450      149,692         45,356      30.3 %       00:08:11

530      149,577         59,991      40.1 %       00:08:10

610      149,462         74,279      49.7 %       00:08:10

SPool Size   Blocks Read

50     303.1 /S

.  Missing lines .

370     302.9 /S

450     212.5 /S

530     182.6 /S

610     153.4 /S

No improvement until the 
pool is 9 times the 
starting size

Here again, there is no real performance improvement until the number of 
buffers is increased by a factor of 9.
Increasing from 370 to 450 buffers reduced the I/O rate by 90/Sec.  
However, subsequent increases save 30 I/Os/Sec,
then 29 I/Os/Sec, so the reduction starts to taper off….



13(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Pool PerformancePool Performance

Eliminating I/O reduces CPU costs
– The CPU cost for an I/O does not change when you improve DASD performance

Throughput and Productivity Improvements

Eliminating I/O
– Usually will not reduce the processor “busy rate”
– It may increase the processor “busy rate”

» But this is good

The huge amounts of cache memory on today’s dasd control units are 
essentially an external extension of the DB2 buffer pools, provided up to 512 
Gig of memory on some models.
However, the CPU cost of I/O remains the same whether the data is in the 
cache, or has to be read from the disk subsystem.
The only difference is the elapsed time.  Finding the data in cache can 
provide a response in 1 Ms, but a cache miss often 
takes more than 20 Ms.



14(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Pool PerformancePool Performance

Larger pools – more memory
– Do not always improve performance
– May increase system paging and hurt performance

» Might look better statistically, but response time can be worse

Memory is a system resource 
– DB2 is not the only sub-system on your processor
– You will run out of memory on a 64 bit machine too…

Just throwing more memory at pools does not always provide better 
performance, and I will show you data to illustrate this.
Over allocating overall memory resources may initially look like you are 
getting better performance because the I/O rate drops, but
if the system paging rate increases too much, overall response time will be 
worse.



15(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

System SummarySystem Summary

The problemToo many pools

Use the Eyeball method of problem analysis….   What’s a big value 
compared to everything else?
Note that BP3, that has a high 85% hit ratio, higher than BP10, shows a high 
I/O rate.



16(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Desired Pool Access?Desired Pool Access?

What is the “desired” access we want to see for this pool?  Is this what we 
expected?
The pool has a large number of buffers, yet it has a very high I/O rate.
What is causing the I/O rate to be so high, and what can we do about it?



17(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

What is Sequential?What is Sequential?

Since we saw very large amounts of SP, we want to see which objects are 
monopolizing the pool with this type of access.
Lowering the vpseqt and hpseqt will not reduce the amount of SP activity, 
but will prevent it from forcing as many random
Pages out of the pool.



18(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

How is it Accessed?How is it Accessed?
BSIS is 1/3 of the overall pool GP

???

Object BSIS has, by far, the greatest amount of SP activity.  Now what else 
can we find out about it?
This object is also causing 148.7 I/Os/Sec using Synch I/O. Why are we 
seeing this?
The number of SP I/Os is about 10% of the number of Synch I/Os.



19(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

How can we Eliminate I/Os?How can we Eliminate I/Os?

Give the pool more buffers – memory
– How much will we need?

» How much can we gain?
– Is it available on the system?

Move objects into different pools

Create a useful Index on the Object

There are three options to reduce the heavy I/O activity against BP2.
Creating a useful index on the object will provide a large reduction in the 
number of pages referenced, and the
greatest overall performance improvement – and cpu reduction.  
Unfortunately, this may not always be possible.



20(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

How much is 5% ?How much is 5% ?

62000

86000

The current pool has 62,000 buffers in total.  What can we gain by throwing 
more memory at it?
If we look at the Hit Ratio, an additional 24,000 buffers (96 Meg) gets us 5%, 
but the slope of the curve flattens after that, so even more memory provides 
diminishing returns.  
Just what does 5% really mean?  Can we convert this into an elapsed time 
saving, or CPU saving?
The answer is – no.



21(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

72 I/Os a Second72 I/Os a Second

62000
94000

Looking at the I/O side, we can see the saving of I/Os/Sec.
Since the duration of the data we were looking at was 58 Mins and 9 Sec, 
this is 3,489 Sec, times 72 I/Os = 251,208 I/Os.
Object BSIS showed an average Synch I/O time of 4 Ms, and this is most of 
where our saving would be.
So if this might be representative of of a batch jobstream, this will reduce the 
elapsed time by almost 17 Minutes.



22(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Cause of the Pain?Cause of the Pain?

Maybe we need to look at COSP as well…

Each uses > 50% of the pool at some point

We can’t stop with BSIS, let’s look at the number two object as well.



23(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

The other large sequentialThe other large sequential

COSP is not a major impact, less than 2% of GP, control with vpseqt…

???

???

Again we see mostly SP, but a high number of Synch I/Os.
But, we issued 106K getpage requests and read in 198K pages.



24(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Object growth Object growth 

They both get much larger if the pool size is increased

Increasing the number of buffers in the pool from 54,000 to 78,000, and the 
objects still monopolize the pool.
So just giving the pool a lot more memory will not help performance a lot, 
since these objects will continue to monopolize the pool resources.



25(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Removing the largest heavy SP objectRemoving the largest heavy SP object

8000 fewer buffers, saves 32 Meg

Saves 47 I/O sec, even with a smaller pool

Removing object BSIS can save 42 I/Os per second against the other mostly 
random objects, while saving 32 meg of memory by reducing the pool size 
by 8,000 buffers (if there are system memory constraints).  Object BSIS can 
be placed into another pool with sequential objects, or a new pool for 
sequential access.  Objects that are heavily scanned all the time do not need 
large memory allocations (unless you can make the pool larger than the 
entire object).



26(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

A Different DB2 SystemA Different DB2 System

Let’s look at data from a different DB2 subsystem.
This system is not using enough pools, and has not separated the objects out 
of BP0.
BP0 is generating 80% of the entire system I/O.
This is probably part of an early morning batch processing scenario.



27(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Different SystemDifferent System

Large pool, many objects

BP0 has a large number of buffers allocated, in an attempt to reduce I/O and 
help performance.  
A lot of the objects in the system (289) are in BP0.



28(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Look at the Top 10 in many CategoriesLook at the Top 10 in many Categories

45% of the I/O is sequential, so the objects we are most concerned with, are 
those with the most sequential access – that are hurting the randomly 
accessed objects.  We also want to look at the objects with the highest I/O 
rates,



29(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

This is a major problemThis is a major problem

Hey guys, we need to get back to tuning basics…..  Separate the Sort objects 
into their own pool.



30(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Top 3 have > 50% of the I/OTop 3 have > 50% of the I/O

The top two sequentially accessed objects, are also the top two in the I/O 
rate/second category.  This is not always the case in every system.



31(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Object detail dataObject detail data

We also have most of the indexes mixed in BP0 with the tablespaces, and the 
sort objects.
Developing some useful indexes on the top two objects will provide the 
highest benefit for reducing both I/O and CPU.



32(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

BP20 also heavily SPBP20 also heavily SP

BP20 is also large, and heavily sequential, with the thresholds set too high.



33(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

One ObjectOne Object

One object is causing almost all the SP activity.



34(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Object is pool residentObject is pool resident

75% of pool GP

This object has 5.7 million getpage requests, and 4.7 million of them are 
sequential.
The object is pool resident, with no I/O activity.
This is a real CPU burner!!!



35(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

First thought for this problemFirst thought for this problem

Add an Index the application can use to eliminate the scan 
activity

A first guess may not always be right….

Let’s look at some more information about this object

Let’s dig a bit deeper into the available data before jumping to easy 
conclusions.



36(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Really small objectReally small object

The object has only 6 pages that are getting all that access and scan activity.  
But, since it is so small, it is not impacting the overall pool performance and 
I/O rate.  It is having a huge impact on CPU cycles because of the number of 
pages scanned.
Now, if you noticed, the data was collected starting at 1:49 am… an obvious 
batch cycle period.  So a good possibility, is that a batch program is 
repeatedly accessing this object for every transaction/process it executes.



37(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

No gain from memoryNo gain from memory

Increasing from 50,000 to 65,000 buffers not a big improvement, only 1.8 I/O’s

Current size

The pool currently has 50,000 buffers.  If we added 15,000 buffers, 60 
megabytes of memory, this would only save 1.8 I/Os a Sec.  Not a
worthwhile usage of memory.  That very heavily scanned object is not 
having any real impact on the I/O rate, because it only occupies 6 pages.



38(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Gain from an Index?Gain from an Index?

If it would go directly to the desired page
– It would reduce the data access Getpages by 5/6 

» But it would add an Index access
Maybe Index only access?

Saving….
– 3,950,000 Getpages for Index only access
– But saving only 3,135,000 Getpages if data access required

Adding another Index will add some overhead to other processes

Adding another Index would save more than 3 milliion Getpage requests, 
but might add some overhead to other processes if they update the data.  



39(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Other Alternatives?Other Alternatives?

A possibility

– Read the table into memory at the start of the batch job

– Would save 5.7 Million Getpage requests

Would eliminate a huge amount of Getpage activity – but might not be 
feasible if any other processes update the table.



40(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Next Pool BP25Next Pool BP25

Again we see a pool with a lot of buffers, and having a lot of sequential 
access.  The sequential thresholds should be lowered to favor the randomly 
accessed objects.



41(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

One killer object One killer object Problem1Problem1

Problem 1Problem 2

Aside from the obvious problem object PROM1, DINV1 will also show some 
interesting problem information.



42(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Mostly Resident    Problem 1Mostly Resident    Problem 1

1/3 of pool GP

Prom1 has 1/3 of the pool getpage activity, and that’s 4.5 million getpages –
and almost all sequential activity.
When synch I/Os are necessary, there is a cache miss and poor response 
time.



43(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

It is an Index…It is an Index…

Why is it sequential??

PROM1 is an Index…..  So the huge scan activity indicates either poor 
design, or an sql coding problem.  This is an opportunity to achieve a large 
cpu saving from reduced getpage activity.
The object is mostly pool resident as we will see later too, from the wkset 
size.



44(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

It isn’t that big…It isn’t that big…

The working set (wkset) size of PROM1 only 1118 pages in a pool of 35,000 
buffers.



45(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Why are we scanning an Index?Why are we scanning an Index?

Poor/improper Index design

SQL coding problems

Fix the application……



46(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Interesting GraphInteresting Graph

55,000

.1% shifts

The pool currently has 55,000 buffers.  So, even though the hit ratio is not the 
best metric to look at, it does show that reducing memory hurts 
performance, while increasing it does not help.



47(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Less hurts, more doesn’t helpLess hurts, more doesn’t help

Looking at numbers, or performance relative to time….

The I/O rate is much more indicative of the performance impact of reducing 
or adding memory from the current 55,000 buffers.



48(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Monopolized the pool Monopolized the pool Problem2Problem2

The scan probably forced all the random pages out…. Vpseqt=80

Even though the activity against DINV1 is much lower than PROM1, at 
some point it monopolized the entire pool, and forced out pages of PROM1 
and all the other random object index pages.
So, reducing the vpseqt to 25% or less will maintain the performance of the 
other objects in the pool, and reduce the overall I/O rate in this pool.



49(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Probably one scan, plus RandomProbably one scan, plus Random

Now if we continue to look at the activity against DINV1, we see that the 
access is almost evenly split between random and sequential.
So – the access was mostly random, and had one, or possibly a couple of 
scans.  However, it was the scans that hurt the performance of everything 
else in the pool.



50(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

A Different DB2 System, High I/OA Different DB2 System, High I/O

Here is a system with a much higher overall I/O rate.



51(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

After Tuning the PoolsAfter Tuning the Pools

Here is the same system 3 months later at the same timeframe, the number 
of pools has been reduced, the getpage activity has increased about 42%, 
and the I/O rate has dropped by 470 per second.  
The greatly reduced I/O allows more useful work to get through the system, 
reflected by the increased Getpage activity.



52(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Huge Performance ImprovementHuge Performance Improvement

The throughput rate (getpage activity) increased more 
than 42%

The I/O Rate/Sec dropped more than 40%
– Saving 470 I/Os per second

This is easily a six figure cost saving from I/O elimination.



53(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Cost Savings from I/O EliminationCost Savings from I/O Elimination



54(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

9 Minutes of Data,  extreme I/O rate9 Minutes of Data,  extreme I/O rate

Too many 
pools



55(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

15.75 Minutes of Data  even higher I/O rate15.75 Minutes of Data  even higher I/O rate
Different SystemDifferent System

A new high for an I/O Rate/Sec.  This is a standard AM workload.



56(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

43 Minutes of Data, after Pool Tuning, and 43 Minutes of Data, after Pool Tuning, and 
fixing some Application problemsfixing some Application problems

After tuning the pools, and fixing some application performance problems.



57(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

What’s happening in BP2?What’s happening in BP2?

BP2 has the highest I/O rate, and the access is heavily sequential.  
Always look at the big problem areas first.



58(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

The Big I/O guys…The Big I/O guys…

The bad guys….   



59(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

The Heavy Sequential ObjectsThe Heavy Sequential Objects

The really bad guys….   So let’s take a lower level look at SBTAB22



60(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

The Data for SBTAB22The Data for SBTAB22

We have several interesting things here:
A: almost all the getpage requests are sequential
B: high synch I/O activity
C: high I/O rate
D: vpseqt of 50% can allow up to 100,000 pages for one sequential scan
Analysis: 1/8 of the requested pages are read into the pool with prefetch, 
but sequential data falls off the LRU queues before the application can read 
the data – and the pages are read back in using Synch I/O.  The 1 Ms avg 
Synch I/O time shows that the requested pages are all found in the cache of 
the dasd control unit.
So – if it can live at the dasd cache level, maybe a larger pool will be able to 
keep it in memory?



61(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Working Set Size in the PoolWorking Set Size in the Pool

Since the Wkset is not really big compared to other sequential objects, there 
are probably many scans/accesses of the object, and it uses less than 5% of 
the pool.
Analysis: It’s probably accessed a lot by a batch job, that does not have a 
high enough priority to get the pages read in by prefetch, and they have to 
be re-read with Synch I/O a second time when the actual getpage is issued.
So – again, will a larger pool help?



62(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

A bit more memory will help, a lot more won’tA bit more memory will help, a lot more won’t

If the pool is increased by 20,000 buffers (80Meg) to 220,000 buffers, this will 
save 30 I/O sec.  Increasing beyond this size is a complete waste of memory. 
We started with a very large pool – in this case making it even larger (+10%) 
will help.
But – just throwing huge amounts of memory at pools does not always 
improve performance!
64Bit memory has some great possibilities, but more memory resources do not 
necessarily mean better performance.

The proper grouping of objects, and effective use of memory can provide 
substantial performance improvements.



63(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Perspectives of Performance dataPerspectives of Performance data

Lies

Darn Lies

And Statistics
– What is the sample?
– Is it meaningful
– Averages over long time periods (many hours) are useless….
– Mini snapshots, at measured intervals, violate established statistical standards
– Averages, of averages, of averages, violate statistical techniques

There are Sampling techniques
– And there can be built in “bias” for a sample

» Sometimes deliberate, sometimes a lack of knowledge….

There are proper ways to collect data, that provide statistical validity, and 
these techniques are clearly documented by the National Bureau of 
Standards.  Data collection techniques that violate accepted standards, 
rarely, if ever, produce reliable results.
When comparing sets of performance data, the data must be from the same 
timeframe, same duration, and hopefully a workload that is reasonably close 
to the first.  Now, unless you have a well documented, canned, and 
repeatable benchmark process, there will always be some degree of 
variation in your workload.  You always need to look at the level and type of 
activity that occurred within your data intervals, and make you own 
determination if they are close enough for reasonable comparisons.
If you take small snapshots of data across a day, they need to be compared 
individually – and grouping the data together into averages usually 
produces gross errors of both performance and perspectives.  Looking at 
performance data across long periods like 12 or 24 hours is completely 
useless for tuning and analysis purposes – because it will mask all 
performance spikes and problems.



64(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Summary  Summary  
The Hit Ratio is not a measurable performance metric

– But still nice to track
» If you track the 

System Hit Ratio

The I/O rate is measurable
– This can be tracked quite easily from many data sources
– Calculate both CPU and elapsed time savings
– CPU savings can be converted to $$

Throwing memory at pools, arbitrarily, usually doesn’t provide 
better performance

64 Bit large memory is not a panacea - yet!

Most sites can optimize performance using 6 to 8 pools, some larger ones 
may need a dozen pools.  A small number of very large pools, absolutely 
will not, provide good performance.  They key to good performance 
remains the proper grouping of objects into pools based upon access type, 
and working set size.  Until we can provide TeraBytes of memory, pool 
tuning will remain an important performance issue.



65(c) Responsive Systems  281 Hwy 79 Morganville, NJ 07751 

Thank you for comingThank you for coming

Are there any Questions?

Joel Goldstein

Responsive Systems Company

Joel@responsivesystems.com


